Learning Modewise Independent Components from Tensor Data Using Multilinear Mixing Model

نویسنده

  • Haiping Lu
چکیده

Independent component analysis (ICA) is a popular unsupervised learning method. This paper extends it to multilinear modewise ICA (MMICA) for tensors and explores two architectures in learning and recognition. MMICA models tensor data as mixtures generated from modewise source matrices that encode statistically independent information. Its sources have more compact representations than the sources in ICA. We embed ICA into the multilinear principal component analysis framework to solve for each source matrix alternatively with a few iterations. Then we obtain mixing tensors through regularized inverses of the source matrices. Simulations on synthetic data show that MMICA can estimate hidden sources accurately from structured tensor data. Moreover, in face recognition experiments, it outperforms competing solutions with both architectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Classification Using High-Order Gene Expression Profiles Based on Multilinear ICA

Motivation. Independent Components Analysis (ICA) maximizes the statistical independence of the representational components of a training gene expression profiles (GEP) ensemble, but it cannot distinguish relations between the different factors, or different modes, and it is not available to high-order GEP Data Mining. In order to generalize ICA, we introduce Multilinear-ICA and apply it to tum...

متن کامل

Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach

A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed appr...

متن کامل

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

Bayesian Sparse Tucker Models for Dimension Reduction and Tensor Completion

Tucker decomposition is the cornerstone of modern machine learning on tensorial data analysis, which have attracted considerable attention for multiway feature extraction, compressive sensing, and tensor completion. The most challenging problem is related to determination of model complexity (i.e., multilinear rank), especially when noise and missing data are present. In addition, existing meth...

متن کامل

Common and Discriminative Subspace Kernel-Based Multiblock Tensor Partial Least Squares Regression

In this work, we introduce a new generalized nonlinear tensor regression framework called kernel-based multiblock tensor partial least squares (KMTPLS) for predicting a set of dependent tensor blocks from a set of independent tensor blocks through the extraction of a small number of common and discriminative latent components. By considering both common and discriminative features, KMTPLS effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013